Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 46
1.
Sci Rep ; 14(1): 8109, 2024 04 06.
Article En | MEDLINE | ID: mdl-38582757

Bone resorption is highly dependent on the dynamic rearrangement of the osteoclast actin cytoskeleton to allow formation of actin rings and a functional ruffled border. Hem1 is a hematopoietic-specific subunit of the WAVE-complex which regulates actin polymerization and is crucial for lamellipodia formation in hematopoietic cell types. However, its role in osteoclast differentiation and function is still unknown. Here, we show that although the absence of Hem1 promotes osteoclastogenesis, the ability of Hem1-/- osteoclasts to degrade bone was severely impaired. Global as well as osteoclast-specific deletion of Hem1 in vivo revealed increased femoral trabecular bone mass despite elevated numbers of osteoclasts in vivo. We found that the resorption defect derived from the morphological distortion of the actin-rich sealing zone and ruffled border deformation in Hem1-deficient osteoclasts leading to impaired vesicle transport and increased intracellular acidification. Collectively, our data identify Hem1 as a yet unknown key player in bone remodeling by regulating ruffled border formation and consequently the resorptive capacity of osteoclasts.


Bone Resorption , Osteoclasts , Humans , Osteoclasts/metabolism , Actins/metabolism , Bone Resorption/metabolism , Bone and Bones/metabolism , Osteogenesis
2.
Brain Sci ; 13(6)2023 May 24.
Article En | MEDLINE | ID: mdl-37371329

Objective: Evaluation of interrater reliability for manual segmentation of brain structures that are affected first by neurofibrillary tau pathology in Alzheimer's disease. Method: Medial perirhinal cortex, lateral perirhinal cortex, and entorhinal cortex were manually segmented by two raters on structural magnetic resonance images of 44 adults (20 men; mean age = 69.2 ± 10.4 years). Intraclass correlation coefficients (ICC) of cortical thickness and volumes were calculated. Results: Very high ICC values of manual segmentation for the cortical thickness of all regions (0.953-0.986) and consistently lower ICC values for volume estimates of the medial and lateral perirhinal cortex (0.705-0.874). Conclusions: The applied manual segmentation protocol allows different raters to achieve remarkably similar cortical thickness estimates for regions of the parahippocampal gyrus. In addition, the results suggest a preference for cortical thickness over volume as a reliable measure of atrophy, especially for regions affected by collateral sulcus variability (i.e., medial and lateral perirhinal cortex). The results provide a basis for future automated segmentation and collection of normative data.

3.
Cereb Cortex ; 33(11): 7044-7060, 2023 05 24.
Article En | MEDLINE | ID: mdl-36786655

Human auditory cortex (AC) organization resembles the core-belt-parabelt organization in nonhuman primates. Previous studies assessed mostly spatial characteristics; however, temporal aspects were little considered so far. We employed co-registration of functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) in musicians with and without absolute pitch (AP) to achieve spatial and temporal segregation of human auditory responses. First, individual fMRI activations induced by complex harmonic tones were consistently identified in four distinct regions-of-interest within AC, namely in medial Heschl's gyrus (HG), lateral HG, anterior superior temporal gyrus (STG), and planum temporale (PT). Second, we analyzed the temporal dynamics of individual MEG responses at the location of corresponding fMRI activations. In the AP group, the auditory evoked P2 onset occurred ~25 ms earlier in the right as compared with the left PT and ~15 ms earlier in the right as compared with the left anterior STG. This effect was consistent at the individual level and correlated with AP proficiency. Based on the combined application of MEG and fMRI measurements, we were able for the first time to demonstrate a characteristic temporal hierarchy ("chronotopy") of human auditory regions in relation to specific auditory abilities, reflecting the prediction for serial processing from nonhuman studies.


Auditory Cortex , Animals , Humans , Auditory Cortex/diagnostic imaging , Auditory Cortex/physiology , Evoked Potentials, Auditory/physiology , Acoustic Stimulation , Brain Mapping/methods , Magnetoencephalography/methods , Magnetic Resonance Imaging/methods
4.
Neuropsychology ; 37(7): 717-740, 2023 Oct.
Article En | MEDLINE | ID: mdl-36201797

OBJECTIVE: We aimed to develop a measure to specifically assess the functioning of the perirhinal cortex (PRC), a brain structure affected very early in Alzheimer's disease (AD) pathology. In this novel task, participants were shown arrays of six complex figures and had to identify the "odd-one." METHOD: The pilot study included 50 normal controls (NCs) and 50 patients in very early stages of AD. Participants completed the task and received MRI scanning. Best differentiating items were determined and applied in a validation study including 25 NCs, 27 early-stage AD patients, and 26 patients with major depression. Logistic regression models investigated if task performance predicted group membership. Task performance was then related to whole-brain gray matter integrity. As proof of concept, cortical thickness values of four regions of interest (ROIs; e.g., medial PRC and entorhinal cortex [ERC]) were compared between the groups. The associations of task performance and cortical thickness of the ROIs were investigated using linear models. RESULTS: Task performance showed good discriminative ability between early-stage AD patients and NCs. Whole-brain analyses revealed four significant clusters (p < .001) with peak voxels in parahippocampal regions including PRC and ERC. ROI analyses showed distinctly reduced cortical thickness in the AD group compared to both other groups in the medial PRC and ERC (p ≤ .001). Task performance modeled by ROI cortical thickness did not achieve significant results. CONCLUSION: Although further validation is needed, especially with age-matched participant groups, these findings indicate that the task detects early cognitive impairment related to AD. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Pilot Projects , Entorhinal Cortex/pathology , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/pathology , Cognitive Dysfunction/pathology
6.
Front Aging Neurosci ; 14: 807971, 2022.
Article En | MEDLINE | ID: mdl-35401149

Background: Professional musicians are a model population for exploring basic auditory function, sensorimotor and multisensory integration, and training-induced neuroplasticity. The brain of musicians exhibits distinct structural and functional cortical features; however, little is known about how these features evolve during aging. This multiparametric study aimed to examine the functional and structural neural correlates of lifelong musical practice in elderly professional musicians. Methods: Sixteen young musicians, 16 elderly musicians (age >70), and 15 elderly non-musicians participated in the study. We assessed gray matter metrics at the whole-brain and region of interest (ROI) levels using high-resolution magnetic resonance imaging (MRI) with the Freesurfer automatic segmentation and reconstruction pipeline. We used BrainVoyager semiautomated segmentation to explore individual auditory cortex morphotypes. Furthermore, we evaluated functional blood oxygenation level-dependent (BOLD) activations in auditory and non-auditory regions by functional MRI (fMRI) with an attentive tone-listening task. Finally, we performed discriminant function analyses based on structural and functional ROIs. Results: A general reduction of gray matter metrics distinguished the elderly from the young subjects at the whole-brain level, corresponding to widespread natural brain atrophy. Age- and musicianship-dependent structural correlations revealed group-specific differences in several clusters including superior, middle, and inferior frontal as well as perirolandic areas. In addition, the elderly musicians exhibited increased gyrification of auditory cortex like the young musicians. During fMRI, the elderly non-musicians activated predominantly auditory regions, whereas the elderly musicians co-activated a much broader network of auditory association areas, primary and secondary motor areas, and prefrontal and parietal regions like, albeit weaker, the young musicians. Also, group-specific age- and musicianship-dependent functional correlations were observed in the frontal and parietal regions. Moreover, discriminant function analysis could separate groups with high accuracy based on a set of specific structural and functional, mainly temporal and occipital, ROIs. Conclusion: In conclusion, despite naturally occurring senescence, the elderly musicians maintained musicianship-specific structural and functional cortical features. The identified structural and functional brain regions, discriminating elderly musicians from non-musicians, might be of relevance for the aging musicians' brain. To what extent lifelong musical activity may have a neuroprotective impact needs to be addressed further in larger longitudinal studies.

7.
Ann Rheum Dis ; 81(8): 1106-1118, 2022 08.
Article En | MEDLINE | ID: mdl-35418478

OBJECTIVE: The aim of this study was to assess the extent and the mechanism by which activin A contributes to progressive joint destruction in experimental arthritis and which activin A-expressing cell type is important for disease progression. METHODS: Levels of activin A in synovial tissues were evaluated by immunohistochemistry, cell-specific expression and secretion by PCR and ELISA, respectively. Osteoclast (OC) formation was assessed by tartrat-resistant acid phosphatase (TRAP) staining and activity by resorption assay. Quantitative assessment of joint inflammation and bone destruction was performed by histological and micro-CT analysis. Immunoblotting was applied for evaluation of signalling pathways. RESULTS: In this study, we demonstrate that fibroblast-like synoviocytes (FLS) are the main producers of activin A in arthritic joints. Most significantly, we show for the first time that deficiency of activin A in arthritic FLS (ActßAd/d ColVI-Cre) but not in myeloid cells (ActßAd/d LysM-Cre) reduces OC development in vitro, indicating that activin A promotes osteoclastogenesis in a paracrine manner. Mechanistically, activin A enhanced OC formation and activity by promoting the interaction of activated Smad2 with NFATc1, the key transcription factor of osteoclastogenesis. Consistently, ActßAd/d LysM-Cre hTNFtg mice did not show reduced disease severity, whereas deficiency of activin A in ColVI-Cre-expressing cells such as FLS highly diminished joint destruction reflected by less inflammation and less bone destruction. CONCLUSIONS: The results highly suggest that FLS-derived activin A plays a crucial paracrine role in inflammatory joint destruction and may be a promising target for treating inflammatory disorders associated with OC formation and bone destruction like rheumatoid arthritis.


Activins , Arthritis, Experimental , Synoviocytes , Activins/genetics , Animals , Arthritis, Experimental/pathology , Fibroblasts/metabolism , Inflammation/pathology , Mice , Severity of Illness Index , Synovial Membrane/metabolism , Synoviocytes/metabolism
8.
Immunology ; 166(1): 121-137, 2022 05.
Article En | MEDLINE | ID: mdl-35196398

Resting conventional T cells (Tconv) can be distinguished from T regulatory cells (Treg) by the canonical markers FOXP3, CD25 and CD127. However, the expression of these proteins alters after T-cell activation leading to overlap between Tconv and Treg. The objective of this study was to distinguish resting and antigen-responsive T effector (Tconv) and Treg using single-cell technologies. CD4+ Treg and Tconv cells were stimulated with antigen and responsive and non-responsive populations processed for targeted and non-targeted single-cell RNAseq. Machine learning was used to generate a limited set of genes that could distinguish responding and non-responding Treg and Tconv cells and which was used for single-cell multiplex qPCR and to design a flow cytometry panel. Targeted scRNAseq clearly distinguished the four-cell populations. A minimal set of 27 genes was identified by machine learning algorithms to provide discrimination of the four populations at >95% accuracy. In all, 15 of the genes were validated to be differentially expressed by single-cell multiplex qPCR. Discrimination of responding Treg from responding Tconv could be achieved by a flow cytometry strategy that included staining for CD25, CD127, FOXP3, IKZF2, ITGA4, and the novel marker TRIM which was strongly expressed in Tconv and weakly expressed in both responding and non-responding Treg. A minimal set of genes was identified that discriminates responding and non-responding CD4+ Treg and Tconv cells and, which have identified TRIM as a marker to distinguish Treg by flow cytometry.


Lymphocyte Activation , T-Lymphocytes, Regulatory , Biomarkers/metabolism , Flow Cytometry , Forkhead Transcription Factors/metabolism , Lymphocyte Count
9.
J Clin Med ; 10(21)2021 Oct 22.
Article En | MEDLINE | ID: mdl-34768389

Voxel-based morphometry (VBM) is an established method for assessing grey matter volumes across the brain. The quality of magnetic resonance imaging (MRI) and the chosen data preprocessing steps can affect the outcome of VBM analyses. We recognized a lack of publicly available and commonly used protocols, which indicates that standardized and optimized preprocessing protocols are needed. This paper focuses on the time- and resource-consuming manual correction of misclassifications of grey matter voxels in cortical structures important in Alzheimer's dementia. A total of 126 individuals, including 63 patients with very early Alzheimer's disease and 63 cognitively normal participants, received thorough neuropsychological testing and 3-Tesla MRI. Automated preprocessing of T1 MPRAGE images was performed, and misclassifications of grey matter voxels were manually identified and corrected. In a second run, the manual correction step was skipped. Multiple regression analyses using DARTEL in SPM8 were then conducted with the manually corrected and uncorrected sample, respectively. Manual correction of voxel misclassifications did not have a major impact on the correlation between episodic memory performance and structural brain imaging results. We conclude that, although performing all preprocessing steps remains the gold standard, skipping manual correction of voxel misclassifications is permitted when investigating populations on the Alzheimer's disease spectrum.

10.
Nat Biotechnol ; 39(12): 1556-1562, 2021 12.
Article En | MEDLINE | ID: mdl-34188222

Frequent testing of large population groups combined with contact tracing and isolation measures will be crucial for containing Coronavirus Disease 2019 outbreaks. Here we present LAMP-Seq, a modified, highly scalable reverse transcription loop-mediated isothermal amplification (RT-LAMP) method. Unpurified biosamples are barcoded and amplified in a single heat step, and pooled products are analyzed en masse by sequencing. Using commercial reagents, LAMP-Seq has a limit of detection of ~2.2 molecules per µl at 95% confidence and near-perfect specificity for severe acute respiratory syndrome coronavirus 2 given its sequence readout. Clinical validation of an open-source protocol with 676 swab samples, 98 of which were deemed positive by standard RT-qPCR, demonstrated 100% sensitivity in individuals with cycle threshold values of up to 33 and a specificity of 99.7%, at a very low material cost. With a time-to-result of fewer than 24 h, low cost and little new infrastructure requirement, LAMP-Seq can be readily deployed for frequent testing as part of an integrated public health surveillance program.


COVID-19 Testing/methods , COVID-19 , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , COVID-19/diagnosis , Humans
11.
J Immunother Cancer ; 9(5)2021 05.
Article En | MEDLINE | ID: mdl-34016720

BACKGROUND: Amplification of the MYCN oncogene is a molecular hallmark of aggressive neuroblastoma (NB), a childhood cancer of the sympathetic nervous system. There is evidence that MYCN promotes a non-inflamed and T-cell infiltration-poor ('cold') tumor microenvironment (TME) by suppressing interferon signaling. This may explain, at least in part, why patients with NB seem to have little benefit from single-agent immune checkpoint blockade (ICB) therapy. Targeting MYCN or its effectors could be a strategy to convert a cold TME into a 'hot' (inflamed) TME and improve the efficacy of ICB therapy. METHODS: NB transcriptome analyses were used to identify epigenetic drivers of a T-cell infiltration-poor TME. Biological and molecular responses of NB cells to epigenetic drugs and interferon (IFN)-γ exposure were assessed by proliferation assays, immunoblotting, ELISA, qRT-PCR, RNA-seq and ChIP-qPCR as well as co-culture assays with T cells. RESULTS: We identified H3K9 euchromatic histone-lysine methyltransferases EHMT2 and EHMT1, also known as G9a and GLP, as epigenetic effectors of the MYCN-driven malignant phenotype and repressors of IFN-γ transcriptional responses in NB cells. EHMT inhibitors enhanced IFN-γ-induced expression of the Th1-type chemokines CXCL9 and CXCL10, key factors of T-cell recruitment into the TME. In MYCN-amplified NB cells, co-inhibition of EZH2 (enhancer of zeste homologue 2), a H3K27 histone methyltransferase cooperating with EHMTs, was needed for strong transcriptional responses to IFN-γ, in line with histone mark changes at CXCL9 and CXCL10 chemokine gene loci. EHMT and EZH2 inhibitor response gene signatures from NB cells were established as surrogate measures and revealed high EHMT and EZH2 activity in MYCN-amplified high-risk NBs with a cold immune phenotype. CONCLUSION: Our results delineate a strategy for targeted epigenetic immunomodulation of high-risk NBs, whereby EHMT inhibitors alone or in combination with EZH2 inhibitors (in particular, MYCN-amplified NBs) could promote a T-cell-infiltrated TME via enhanced Th1-type chemokine expression.


Antineoplastic Agents/pharmacology , Chemokines/genetics , Enzyme Inhibitors/pharmacology , Epigenesis, Genetic/drug effects , Gene Amplification , Interferon-gamma/pharmacology , Lymphocytes, Tumor-Infiltrating/drug effects , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/drug therapy , T-Lymphocytes/drug effects , Cell Line, Tumor , Chemokines/metabolism , Coculture Techniques , Gene Expression Regulation, Neoplastic , Histocompatibility Antigens/genetics , Histocompatibility Antigens/metabolism , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Molecular Targeted Therapy , N-Myc Proto-Oncogene Protein/metabolism , Neuroblastoma/genetics , Neuroblastoma/immunology , Neuroblastoma/metabolism , Signal Transduction , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transcriptome , Tumor Microenvironment
12.
Diabetologia ; 64(5): 1079-1092, 2021 05.
Article En | MEDLINE | ID: mdl-33515070

AIMS/HYPOTHESIS: Oral administration of antigen can induce immunological tolerance. Insulin is a key autoantigen in childhood type 1 diabetes. Here, oral insulin was given as antigen-specific immunotherapy before the onset of autoimmunity in children from age 6 months to assess its safety and immune response actions on immunity and the gut microbiome. METHODS: A phase I/II randomised controlled trial was performed in a single clinical study centre in Germany. Participants were 44 islet autoantibody-negative children aged 6 months to 2.99 years who had a first-degree relative with type 1 diabetes and a susceptible HLA DR4-DQ8-containing genotype. Children were randomised 1:1 to daily oral insulin (7.5 mg with dose escalation to 67.5 mg) or placebo for 12 months using a web-based computer system. The primary outcome was immune efficacy pre-specified as induction of antibody or T cell responses to insulin and measured in a central treatment-blinded laboratory. RESULTS: Randomisation was performed in 44 children. One child in the placebo group was withdrawn after the first study visit and data from 22 insulin-treated and 21 placebo-treated children were analysed. Oral insulin was well tolerated with no changes in metabolic variables. Immune responses to insulin were observed in children who received both insulin (54.5%) and placebo (66.7%), and the trial did not demonstrate an effect on its primary outcome (p = 0.54). In exploratory analyses, there was preliminary evidence that the immune response and gut microbiome were modified by the INS genotype Among children with the type 1 diabetes-susceptible INS genotype (n = 22), antibody responses to insulin were more frequent in insulin-treated (72.7%) as compared with placebo-treated children (18.2%; p = 0.03). T cell responses to insulin were modified by treatment-independent inflammatory episodes. CONCLUSIONS/INTERPRETATION: The study demonstrated that oral insulin immunotherapy in young genetically at-risk children was safe, but was not associated with an immune response as predefined in the trial primary outcome. Exploratory analyses suggested that antibody responses to oral insulin may occur in children with a susceptible INS genotype, and that inflammatory episodes may promote the activation of insulin-responsive T cells. TRIAL REGISTRATION: Clinicaltrials.gov NCT02547519 FUNDING: The main funding source was the German Center for Diabetes Research (DZD e.V.).


Diabetes Mellitus, Type 1/prevention & control , Immunotherapy/methods , Insulin/administration & dosage , Administration, Oral , Antibody Formation/drug effects , Antibody Formation/genetics , Autoantibodies/drug effects , Autoantibodies/genetics , Autoimmunity/drug effects , Child, Preschool , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Family , Female , Germany , Humans , Infant , Insulin/immunology , Male , Primary Prevention/methods
13.
Arch Clin Neuropsychol ; 36(5): 838-843, 2021 Jul 19.
Article En | MEDLINE | ID: mdl-33237317

OBJECTIVE: Reduced semantic memory performance is a known neuropsychological marker of very early Alzheimer's disease (AD), but the task format that best predicts disease status is an open question. The present study aimed to identify the semantic fluency task and measure that best discriminates early-stage AD patients (PATs) from cognitively healthy controls. METHOD: Semantic fluency performance for animals, fruits, tools, and vehicles was assessed in 70 early-stage AD PATs and 67 cognitively healthy participants. Logistic regressions and receiver operating characteristics were calculated for five total score semantic fluency measures. RESULTS: Compared with all other measures, living things (i.e., total correct animals + total correct fruits) achieved highest z-statistics, highest area under the curve and smallest difference between the upper and lower 95% confidence intervals. CONCLUSION: Living things total correct is a powerful tool to detect the earliest signs of incipient AD.


Alzheimer Disease , Semantics , Alzheimer Disease/diagnosis , Humans , Neuropsychological Tests , Verbal Behavior
14.
Front Hum Neurosci ; 14: 566735, 2020.
Article En | MEDLINE | ID: mdl-33132879

Gait analysis involving cognitive-motor dual task (DT) is a diagnostic tool in geriatrics. Cognitive-motor interference effects during DT, such as decreased walking speed and increased step-to-step variability, have a high predictive value for fall risk and cognitive decline. Previously we showed the feasibility of DT during functional magnetic resonance imaging (fMRI) using an MRI-compatible stepping device. Here, we improved the DT-fMRI protocol with respect to task difficulty and signal robustness, making it more suitable for individualized analysis to better understand the neuronal substrates of cognitive-motor interference effects. Thirty healthy elderly subjects performed cognitive and motor single tasks (ST; stepping or finger tapping), as well as combined cognitive-motor DT during fMRI. After whole brain group level analysis, a region-of-interest (ROI) analysis and the computation of dual task costs (DTC = activation difference ratio ST/DT) at individual level were performed. Activations in the primary (M1) and secondary motor as well as in parietal and prefrontal cortex were measured at the group level during DT. Motor areas showed decreased activation whereas parietal and prefrontal areas showed increased activation in DT vs. ST. Stepping yielded more distinctive activations in DT vs. ST than finger tapping. At the individual level, the most robust activations (based on occurrence probability and signal strength) were measured in the stepping condition, in M1, supplementary motor area (SMA) and superior parietal lobule/intraparietal sulcus (SPL/IPS). The distribution of individual DTC in SPL/IPS during stepping suggested a separation of subjects in groups with high vs. low DTC. This study proposes an improved cognitive-motor DT-fMRI protocol and a standardized analysis routine of functional neuronal markers for cognitive-motor interference at the individual level.

16.
Exp Dermatol ; 28(12): 1493-1500, 2019 12.
Article En | MEDLINE | ID: mdl-31419309

Itch is the commonest skin-related symptom, and sex differences are increasingly recognised as important determinants in stratified medicine, but only little is known about sex differences in itch. Questionnaire-based studies indicated that women perceive itch as more intensive and bothersome in comparison with men. However, data of studies using standardised itch models to objectify sex differences are scarce and inconsistent. To determine sex differences in intensity, skin flares and central processing of histaminergic itch, we compared 15 female and 15 male healthy subjects in a double-blinded, within-subject, placebo-controlled study using a histamine skin prick itch model (histamine 1% applied onto the volar forearm) and functional MRI. We found trends in higher mean itch intensity (0.58 VAS, CI 95% 0.004-1.19, P = .056) and maximum itch intensity (men 3.93 VAS ± 0.39 SD at 3 minutes, women 4.73 VAS ± 0.31 SD at 4 minutes, P = .073) in women paralleled by a trend in a stronger positive correlation between itch intensity and blood oxygen level-dependent (BOLD) activity in brain structures identified during itch in comparison with men (rs in women: .46, P = .08, rs in men: .07, P = .79). The erythema and wheal following histamine skin pricking were (non-significantly) larger in men, indicating that higher mean itch intensities on the right volar forearm in women may not be explained by more intense flares. The comparison of the activation patterns between the sexes revealed increased activity in men compared to women in the left middle temporal gyrus (temporooccipital part)/lateral occipital cortex. Thus, our findings indicate that histaminergic itch perception and central itch processing differ between the sexes under standardised conditions.


Brain/physiopathology , Pruritus/physiopathology , Sex Characteristics , Skin/physiopathology , Adult , Brain/diagnostic imaging , Female , Histamine , Humans , Magnetic Resonance Imaging , Male , Pilot Projects , Pruritus/diagnostic imaging , Young Adult
17.
Blood ; 134(13): 1046-1058, 2019 09 26.
Article En | MEDLINE | ID: mdl-31434705

Although bone marrow niche cells are essential for hematopoietic stem cell (HSC) maintenance, their interaction in response to stress is not well defined. Here, we used a mouse model of acute thrombocytopenia to investigate the cross talk between HSCs and niche cells during restoration of the thrombocyte pool. This process required membrane-localized stem cell factor (m-SCF) in megakaryocytes, which was regulated, in turn, by vascular endothelial growth factor A (VEGF-A) and platelet-derived growth factor-BB (PDGF-BB). HSCs and multipotent progenitors type 2 (MPP2), but not MPP3/4, were subsequently activated by a dual-receptor tyrosine kinase (RTK)-dependent signaling event, m-SCF/c-Kit and VEGF-A/vascular endothelial growth factor receptor 2 (VEGFR-2), contributing to their selective and early proliferation. Our findings describe a dynamic network of signals in response to the acute loss of a single blood cell type and reveal the important role of 3 RTKs and their ligands in orchestrating the selective activation of hematopoietic stem and progenitor cells (HSPCs) in thrombocytopenia.


Hematopoietic Stem Cells/pathology , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction , Thrombocytopenia/pathology , Acute Disease , Animals , Becaplermin/metabolism , Blood Platelets/metabolism , Blood Platelets/pathology , Hematopoietic Stem Cells/metabolism , Mice, Inbred C57BL , Proto-Oncogene Proteins c-kit/metabolism , Thrombocytopenia/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
18.
Magn Reson Imaging ; 60: 38-43, 2019 07.
Article En | MEDLINE | ID: mdl-30928387

Background and purpose To demonstrate the clinical feasibility of a novel MRI pulse sequence, Golden-angle radial sparse parallel MRI (GRASP) through comparison to the current imaging technique, dynamic T1- weighted contrast enhanced (DCE) imaging in terms of image quality and lesion depiction in the detection of microlesions (microadenomas and cysts) of the pituitary gland. MATERIALS AND METHODS: 16 patients (11 microadenomas, 5 cysts) underwent two MRI examinations (Siemens 1.5T and 3T) on separate dates, one using standard DCE (temporal resolution 30 s) and the other using GRASP (temporal resolution of 4.4 s). Two neuroradiologists separately recorded measures of image quality (Scale 1-5, 5 = best), lesion size and contrast arrival times in terms of first and best lesion conspicuity. RESULTS: In qualitiative analysis there were no significant differences in terms of average visual image sharpness (DCE 3.9 ±â€¯0.9, GRASP 3.9 ±â€¯0.9) or visual contrast scores (DCE 4.1 ±â€¯1.2, GRASP 4.4 ±â€¯0.8). Pearson's correlation coefficients for interreader lesion measurements (width and height, mm) ranged from substantial to almost perfect agreement (r = 0.73 to 0.88). Analysis of contrast arrival times revealed an average lesion first-conspicuity time of 60.7 ±â€¯16.7 s for DCE compared to 50.2 ±â€¯10.3 s for GRASP with a difference of 10.5 ±â€¯16.2 s (p = 0.023). CONCLUSION: Depiction of pituitary microlesions is feasible with GRASP, which has the potential to increase sensitivity through higher temporal resolutions combined with isotropic acquisition allowing for multi-planar reconstructions; this remains to be proven in larger cohorts.


Adenoma/diagnostic imaging , Contrast Media/chemistry , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging , Pituitary Gland/diagnostic imaging , Adult , Aged , Cysts/diagnostic imaging , Female , Human Growth Hormone/metabolism , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Observer Variation , Pituitary Neoplasms/diagnostic imaging , Prevalence , Prolactinoma/diagnostic imaging , Quality of Life , Reproducibility of Results , Retrospective Studies
19.
Front Neurol ; 9: 32, 2018.
Article En | MEDLINE | ID: mdl-29467712

PURPOSE: The aim of this pilot study was to assess the clinical feasibility, diagnostic yield, advantages, and disadvantages of structured reporting for routine MRI-reading in patients with primary diagnosis of intracranial tumors as compared to traditional neuroradiological free text reporting. METHODS: A structured MRI reporting template was developed covering pathological, anatomical, and functional aspects in an itemized fashion. Retrospectively, 60 consecutive patients with first diagnosis of an intracranial tumor were selected from the radiology information system/PACS system. Structured reporting was performed by a senior neuroradiologist, blinded to clinical and radiological data. Reporting times were measured per patient. The diagnostic content was compared to free text reporting which was independently performed on the same MRI exams by two other neuroradiologists. The comparisons were categorized per item as: "congruent," "partially congruent," "incongruent," or "not mentioned in free-style report." RESULTS: Tumor-related items: congruent findings were found for all items (17/17) with congruence rates ranging between 98 and 39% per item. Four items achieved congruence rates ≥90%, 5 items >80%, and 9 items ≥70%. Partially congruent findings were found for all items in up to 50% per item. Incongruent findings were present in 7/17 items in up to 5% per item. Free text reports did not mention 12 of 17 items (range 7-43% per item). Non-tumor-related items, including brain atrophy, microangiopathy, vascular pathologies, and various extracranial pathologies, which were not mentioned in free-text reports between 18 and 85% per item. Mean reporting time for structured reporting was 7:49 min (3:12-17:06 min). CONCLUSION: First results showed that expert structured reporting ensured reliable detection of all relevant brain pathologies along with reproducible documentation of all predefined diagnostic items, which was not always the case for free text reporting. A mean reporting time of 8 min per patient seems clinically feasible.

20.
Cell Stem Cell ; 22(2): 262-276.e7, 2018 02 01.
Article En | MEDLINE | ID: mdl-29451855

Despite much work studying ex vivo multipotent stromal cells (MSCs), the identity and characteristics of MSCs in vivo are not well defined. Here, we generated a CD73-EGFP reporter mouse to address these questions and found EGFP+ MSCs in various organs. In vivo, EGFP+ mesenchymal cells were observed in fetal and adult bones at proliferative ossification sites, while in solid organs EGFP+ cells exhibited a perivascular distribution pattern. EGFP+ cells from the bone compartment could be clonally expanded ex vivo from single cells and displayed trilineage differentiation potential. Moreover, in the central bone marrow CD73-EGFP+ specifically labeled sinusoidal endothelial cells, thought to be a critical component of the hematopoietic stem cell niche. Purification and molecular characterization of this CD73-EGFP+ population revealed an endothelial subtype that also displays a mesenchymal signature, highlighting endothelial cell heterogeneity in the marrow. Thus, the CD73-EGFP mouse is a powerful tool for studying MSCs and sinusoidal endothelium.


5'-Nucleotidase/metabolism , Bone Marrow Cells/metabolism , Endothelial Cells/metabolism , Multipotent Stem Cells/metabolism , Staining and Labeling , Stem Cell Niche , Animals , Bone Marrow/metabolism , Bone Marrow Cells/cytology , Chondrogenesis , Endothelial Cells/cytology , Female , Genes, Reporter , Green Fluorescent Proteins/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Multipotent Stem Cells/cytology , Organ Specificity , Stromal Cells/cytology , Stromal Cells/metabolism
...